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DSS 15, 45, and 65 34-Meter High-Efficiency Antenna

Radio Frequency Performance Enhancement by

Tilt Added to the Subreflector During

Elevation Angle Changes

M. S. Katow 1

Ground Antenna and Facilities Engineering Section

The focusing adjustments of the subrellector of an az-el Cassegrainian antenna

that use only linear motions have always ended in lateral offsets of the phase cen:
ters at the subreflector's focus points at focused positions, which have resulted in

small gain losses. This article describes how lateral offsets at the two focus points
were eliminated by tilting the subreflector, resulting in higher radio frequency (RF)

eEiciencies at all elevation angles rotated from the rigging angle.

I. Introduction

At the 45-deg elevation angle, the subreflector of the

shaped Cassegrainian geometry radio frequency (RF) sys-

tem of the 34-m high-efficiency antenna is focused for max-

imum RF gain. Any change in the elevation angle results

in gravity loading displacements to the reflective RF sur-

faces and subsequent RF-gain loss due to the defocused

condition of the Cassegrainian system.

An analysis method for determining the lateral and ax-
ial translations of the subreflector required to maintain its

optimum focused position throughout the elevation angle

range, without the ability to tilt the axis of the subre-

] M. S. Katow, who is assigned on contract to the Ground Antenna
and Facilities Engineering Section, is an employee of Planning Re-
search Corporation, McLean, Virginia.

flector, was described in [1]. Lateral offsets of the phase
centers existed at the optimum focused positions, which

resulted in some RF-gain loss. This article describes how

the addition of the tilting adjustment of the subreflector
minimized the lateral offsets at the phase centers of the sec-

ondary refector. This correction resulted in smaller RF-

gain losses with elevation angle motions from the 45-deg

rigging elevation angle.

II. Shaped Cassegrainian RF Geometry

The 34-m shaped Cassegrainian RF geometry, set at

the 45-deg elevation angle, is illustrated in Fig. 1. Like
a paraboloid, the inner rays reflected from the subreflec-

tor are moved outward, resulting in more uniform RF-

amplitude distribution across the main reflector for in-

creased RF efficiency. Also, the equivalent focal length,

as defined in a paraboloid, increases from about 11.02 In
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(434 in.) at the center to about 11.81 m (465 in.) at the

outer edge of the reflector.

Assuming a single phase center, the movement of the

primary phase center of the main reflector during the el-

evation angle change was determined by best fitting a
paraboloid to the gravity-loaded displacements of the re-

flector. This was done by using both the longer focal length

to represent the major part of the reflector surface and the

root mean square (rms) program [2] to best fit a paraboloid

to the reflector distortions for the gravity loading changes

from a 45-deg to a 90-deg elevation angle. The change is

defined in Fig. 2. The gravity distortions of the reflector

were computed using the IDEAS program [3] along with
the displacement of the nodes supporting the subreflector

on the quadrupod. The field-measured displacements 2 be-

tween the subreflector and its quadrupod supporting nodes
with dial indicators were then added to the computed dis-

placements to determine the deflected position of the sub-
reflector for the same elevation angle change as for the

reflector. The deflected position, as calculated by proce-

dures described in the following paragraphs, is also shown

in Fig. 2.

with no displacements assumed in the subreflector's sup-

porting and controlling mechanism. To account for the
deflections in the subreflector's supporting and controlling

mechanism, the dial indicator readings of Figs. 4 and 5

resolved into displacements are shown in Fig. 7 for a 90-

deg elevation with the subreflector set on axis at a 45-deg
elevation. The summed or total displacement of the sub-

reflector is also shown in Fig. 2 for a 90-deg elevation with

a 0 setting at a 45-deg elevation.

IV. Subreflector Supporting and Controlling
Mechanism

The subreflector is supported by an assembly of three

parallel plates in which the top plate is supported by three

vertical jacks attached to the quadrupod. The top view of
the vertical jacks' positions are shown in Fig. 8. The three

plates are interconnected by slides and horizontal jacks to

provide relative motion in the X- and Y-axes. Position

indicating transducers parallel to the jacks provide a servo

system where tables inserted in a microprocessor control

the position of the jacks according to the elevation angle
of the antenna.

III. Subreflector Gravity Displacements

To measure the deflections of the subreflector's sup-

porting and controlling mechanism, dial indicators were

installed, using special fixtures, between the apex of the

quadrupod and the top of the subreflector as shown in

Fig. 3. 2 These dial indicators were set to 12.7 mm (0.5 in.)

at 90-deg elevation, and the deflection figures were read
as the antenna was rotated in elevation angle down from

a 90-deg elevation angle to a 6-deg elevation angle. The
readings are plotted in Fig. 4 for dial indicator No. 5.3 The

No. 1, No. 2, and No. 3 dial-indicator readings are shown

in Fig. 5, where dial readings were also set at 12.7 mm

(0.5 in.) at 90-deg elevation, and the displacements were
read as the elevation angle was reduced to 6 deg from

90 deg. 3

The computed displacements of the structural nodes of

the quadrupod's apex for the gravity loading change from

a 45-deg to a 90-deg elevation angle are given in Table 1.

The computed displacements portion of the subreflector is

shown in Fig. 6, where the deflections of the quadrupod's

supporting nodes are resolved into the displaced position

of the top surface of the subreflector and its central axis,

2 B. Parvin, "DSS-15 S/R Position Test," JPL IOM 3324-86-31 (in-

ternal document), Jet Propulsion Laboratory, Pasadena, Califor-

nia, April 21, 1986.

3 Data by Ben Parvin.

V. Axial (Z)-Focus Curve Table

With the availability of field-measured Z-focus curve

from the DSS 15 antenna, the focus-curves data from

A. Freiley were used (Fig. 9). 4 The initially computed fo-

cus curve, designated as autofocus, was used in the DSS 15

servo controlling system. The measured focus curve in-
dicated more deflection than was computed in the sub-

reflector/reflector system and also showed an error in Z-

positioning at a 45-deg elevation of -1.02 mm (-0.04 in.).
A "measured" focus line is drawn through the experimen-

tal data. In order to develop an operating table for the

microprocessor, it follows that:

Z = K (sin (elevation angle) -sin (rigging el angle))

+ offset

The fit of this curve with K = 9.65 mm (0.380 in.), with an

offset of -1.0 mm (-0.039 in.), is shown by "X" points in

Fig. 9. Reduced to table form, this curve when no tilting
of the subreflector is done is shown in Table 2. Table 2

also delineates the curve with no offset, to be used when

the zero-C focused position of the subreflector corresponds
with the dial indicators.

4 A. Freiley, "Preliminary Results of the 34M H.E. Antenna X-Band
Performance Measurements at DSS-15," JPL IOM 333,1-0885-023

(internal document), Jet Propulsion Laboratory, Pasadena, Cali-
fornia, May 31, 1985.
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VI. Subreflector Tilt and Y-Lateral
Adjustments

Although the complex quadrupod assembly is modeled
closely in the computing process, the deflections usually

are larger than computed, as illustrated by Fig. 9. To ad-

dress this problem, a 10-percent addition will be made to

the computed and measured displacements of the subre-
flector. Also, to simplify the calculations, the assumption

is made that the lateral adjusting jackscrews and the Z-

axial jackscrews act on a plane on the same level as the

top plate of the controlling mechanism. In other words, no
interaction is assumed. This was thought to be consistent

with the accuracy requirements.

Figure 10 delineates the total tilt and the Y-lateral ad-

justments required at a 90-deg elevation angle, starting

from el = 45 deg, to focus the subreflector to the phase

center of the primary RF feed horn and the primary focus

of the best-fit paraboloid:

For el = 45 deg to el = 90 deg,

tilt change - 3.101 - 2.298 _ 0.001164 rad
689.643

For el = 45 deg to el = 90 deg,

Y-travel = -3.1001 + (31.75 x 0.001164) = -3.064 cm

When tilting the subreflector from el = 45 deg to 90 deg,

the jackscrew length changes. Jackscrew No. 1 must be
raised as follows:

0.001164 x 1.194 m = 1.390 mm (0.055 in.)

Jackscrews No. 2 and No. 3 must be lowered as follows:

0.001164 x -0.597 m = -0.695 mm (-0.0275 in.)

It turns out that the cosine function of the elevation

angle accurately describes the tilting of the subrefiector [1]

from 0 deg to 90 deg. For jackscrew No. 1,

Z1 = K2 (cos (el) - cos (rigging angle))

+ Z-axial focus

For jackscrews No. 2 and No. 3,

--/('2 (cos (el) -- cos (rigging angle))
Z23 = 2

+ Z-axial focus

K2 = total jack travel constant

for 0-deg to 90-deg elevation

angle change

= 1.390/cos 45 deg = 1.966

The summed jackscrew positions for tilt and axial focus

corrections computed from the above equations are delin-
eated in Tables 3 and 4. These table values can be incorpo-

rated in the microprocessor for controlling the subreflector

jackscrews for axial and tilting adjustments during the el-

evation angle changes.

For the -3.064 cm (-1.206 in.) Y-lateral adjustment
of the subreflector (Fig. 10) required to maintain focus

at el = 90 deg after the elevation angle change from

el = 45 deg, the total Y-lateral travel equals -3.064 cm

(-1.206 in.) divided by cosine 45 deg or -4.333 cm

(-1.706 in.), which equals Ky. It follows that the equation
controlling the Y-lateral adjustment equals

Y = K u (cos (El) - cos (45 deg))

Finally, the Y-lateral positions shown in Table 5, com-
puted from the above equation, can be incorporated in the

microprocessor to control the Y-lateral motion of the sub-

reflector.

VII. Conclusions

The described tables were installed first in the DSS 45

subreflector control system, and the measured efficiency

data 5 are shown in Fig. 11, where the RF efficiencies

ranged from about 67 to 70 percent at X-band. 6

Although the measured RF efficiency change from a 45-

deg elevation angle to a 10-deg elevation angle indicates
only about a 3 percent drop, some field-checking focusing

at the low angles should be done for possible improved RF-
efficiency values. These field readings could then be used

to upgrade the focusing tables in the subreflector's con-
troller to enhance future operations required when higher

RF frequencies are used.

S D. Bathker, "Data with Graham Baines, DSS-45," JPL IOM

3331-88-061 (internal document), Jet Propulsion Laboratory,

Pasadena, California, June 30, 1988.

6 Figure 11 reports measured efficiency according to existing stan-

dards (DSN Radio Source List for Antenna Calibration, JPL

D-3801, Rev. B (internal document), Jet Propulsion Laboratory,
Pasadena, California, September 25, 1987) and includes slight at-

mospheric extinction. The source flux and size standards within

JPL D-3801, Rev. B are currently being revised such that the

true peak antenna efficiency, sans atmosphere, is slightly over

75 percent. A revised DSN Radio Source List is being produced.
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Table 1. Displacements of structural nodes of the quadrupod's apex

Node no.

Displacements

X, ram/in. Y, ram/in. Z, ram/in.

16131 0.23/0.009 17.70/0.697 -1.96/-0.077

16141 0.23/0.009 17.80/0.701 -1.96/-0.077

15130 -0.25/-0.010 17.70/0.697 -0.30/-0.012

15140 -0.25/-0.010 17.80/0.701 -0.30/-0.012

Table 2. Z-axial focus curve

Seq

Elevation

an gle,

deg

sin, el --
sin, el

sin, 45 deg

Z with

K = 9.65 K = 0.38

Z with

1.02(-0.4) offset

nun in. mm in.

1 0 0.0 --0.7071 -6.82 -0.269 --7.85 --0.309

2 10 0.1736 --0.5335 -5.16 --0.203 --6.17 -0.243

3 20 0.3420 -0.3651 -3.53 --0.139 --4.55 -0.179

4 30 0.5000 -0.2071 --2.01 --0.079 --3.02 --0.119

5 40 0.6428 -0.0643 -0.61 --0.024 --1.63 --0.064

6 45 0.7071 0.0 0.0 0.0 -- 1.02 - 0.040

7 50 0.7660 0.0589 0.56 0.022 -- 0.46 - 0.018

8 60 0.8660 0.1589 1.52 0.060 0.51 0.020

9 70 0.9397 0.2326 2.24 0.088 1.22 0.48

10 80 0.9848 0.2777 2.69 0.106 1.68 0.066

11 90 1.000 0.2929 2.82 0.111 1.80 0.71

Table 3. Jack 1 tilt corrections Z-axial focus

Seq

Elevation

angle,

deg

(1) (2)
Tilt correction Z-axial focus

cos, el - for jack no. 1 for no tilt
cos, el cos, 45 deg

mm in. mm in.

1 0 1.0 0.2929 -0.58 -0.023 -6.83 -0.269

2 10 0.9848 0.2777 -0.53 -0.021 -5.16 -0.203

3 20 0.9397 0.2326 --0.46 --0.018 -3.53 -0.139

4 30 0.8660 0.1589 --0.30 --0.012 -2.01 --0.079

5 40 0.7660 0.0589 --0.13 --0.005 --0.61 --0.024

6 45 0.7071 0.0 0.0 0.0 0.0 0.0

7 50 0.6428 0.0643 0.13 0.005 0.56 0.022

8 60 0.5000 -0.2071 0.41 0.016 1.52 0.060

9 70 0.3420 -0.3651 0.71 0.028 2.24 0.088

I0 80 0.1736 --0.5335 1.07 0.042 2.69 0.106

11 90 0.0 -0.7071 1.40 0.055 2.82 0.111
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Seq

1

2

3

4

5

6

7

8

9

10

11

Column

b Column

Table 4. Focused jack positions

Elevation

angle,

deg

(3)"
Jack no. 1

Z-positlon

(4) b
Jacks no. 2 and no. 3

Z-position

mm in. nun in.

0 -7.41 -0.292

10 --5.69 -0.224

20 -3.99 -0.157

30 -2.31 -0.091

40 -0.74 -0.029

45 0.0 0.0

50 0.69 0.027

60 1.93 0.076

70 2.95 0.116

80 3.76 0.148

90 4.22 0.166

-6.55 -0.258

--4.90 -0.193

-3.30 --0.130

--0.85 --0.073

--0.53 -0.021

0.0 0.0

0.51 0.020

1.32 0.052

1.88 0.074

2.16 0.085

3.52 0.139

(3) = column (1) + column (2).

(4) = column(I) + column (2).
2

Seq

Table 5. Y-lateral adjuslmenta

(_)
Elevation, cos, el cos, el -

deg cos, e145

(a) X 1.706 =
Y-lateral

position

1 0 1.0 0.2929 0.500

2 15 0.9659 0.2588 0.4:12

3 30 0.8660 0.1589 0.159

4 45 0.7071 0.0 0.0

5 60 0.5000 -0.2071 --0.207

6 75 0.2588 -0.4483 -0.765

7 90 0.0 -0.7071 - 1.206
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Fig. 1. The 34-m shaped Cassegralnian RF geometry at 45-deg elevation angle.
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Fig. 3. Dial Indicator locations.
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Fig. 4. The 34-m az-el subreflector field deflections from apex,

No. 5 dial indicator (shown In Fig. 3), lateral displacements.
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Fig. 5. The 34-m az-el subrefiector field deflections from apex,

No. 1, No. 2, No. 3, and No. 4 dial indicators (shown in Fig. 3).
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Fig. 6. Computed displacements of subreflector at el = 90 deg, set at 45 deg.
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Fig. 7. Dial-Indicated displacements of subrellector at el = 90 deg, set at 45 deg.
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Fig. 8. X-Y jackscrew locations on quadrupod.
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Fig. 9. The 34-m field data, DSS 15.
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Fig. 10. Subrellector lateral and tilt focusing adjustments, el = 45 deg to el = 90 deg.
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